
Database Query Compilation: Our Journey

Thomas Neumann and Viktor Leis

Technische Universität München



How do Database Systems Execute Queries?

1. Tuple-at-a-time interpretation:
MySQL, PostgreSQL (mostly), Microsoft SQL Server (default)

2. Vector-at-a-time interpretation (vectorization):
DuckDB, Snowflake, MS SQL Server (“columnstore index”)

3. Compilation:
Amazon Redshift, Hyper, Umbra

1



The Difficulty of Vector-at-a-time Processing

“[...] needs to handle the N-ary nature of the operators. As a result, expressing
complex relational operators in a vectorized model is a challenge in itself.”
Marcin Zukowski, doctoral dissertation

2

https://pure.uva.nl/ws/files/4321252/68040_thesis.pdf
https://pure.uva.nl/ws/files/4321252/68040_thesis.pdf
https://pure.uva.nl/ws/files/4321252/68040_thesis.pdf


The Difficulty of Vector-at-a-time Processing

“[...] needs to handle the N-ary nature of the operators. As a result, expressing
complex relational operators in a vectorized model is a challenge in itself.”
Marcin Zukowski, doctoral dissertation

2

https://pure.uva.nl/ws/files/4321252/68040_thesis.pdf
https://pure.uva.nl/ws/files/4321252/68040_thesis.pdf
https://pure.uva.nl/ws/files/4321252/68040_thesis.pdf


Compilation

Can generate any code:

Simplifies development:
1. prototype new operator by hand-coding it outside the database system
2. benchmark, optimize, refine
3. write code that generates hand-written code

3



Compilation

Can generate any code:

Simplifies development:
1. prototype new operator by hand-coding it outside the database system
2. benchmark, optimize, refine
3. write code that generates hand-written code

3



Challenges of Compilation

• Some workloads contain many short queries
• Low latency is crucial for interactive applications
• Machine-generated queries can be huge (e.g., 10MB SQL text)
• High throughput is crucial for long-running queries
• Hard to predict upfront how long a query will take

4



Compilation to C++ (before 2011)

• We considered this very early on
+ easy
+ high throughput
− very high compilation latency

• Redshift still does it
• multi-tenant code cache with high hit rates (99%+)
• nevertheless, about half the end-to-end latency appears to be in compilation
https://github.com/amazon-science/redset

5

https://github.com/amazon-science/redset


Compilation to C++ (before 2011)

• We considered this very early on
+ easy
+ high throughput
− very high compilation latency

• Redshift still does it
• multi-tenant code cache with high hit rates (99%+)
• nevertheless, about half the end-to-end latency appears to be in compilation
https://github.com/amazon-science/redset

5

https://github.com/amazon-science/redset


Start of the Journey: Compilation to LLVM IR (2011 - 2017)

• Hyper was one of the first database systems to compile to LLVM IR
• Initially the only execution mode

+ high query throughput
+ fairly good compilation latency for most queries

− not ideal for workloads with many small heterogeneous queries
− cannot handle generated monster queries

6



Start of the Journey: Compilation to LLVM IR (2011 - 2017)

• Hyper was one of the first database systems to compile to LLVM IR
• Initially the only execution mode

+ high query throughput
+ fairly good compilation latency for most queries
− not ideal for workloads with many small heterogeneous queries
− cannot handle generated monster queries

6



Compilation to Bytecode (2018 - 2020)

• In 2018, we added a bytecode interpreter to Hyper
• short queries: bytecode interpreter
• medium queries: LLVM without optimizations
• long-running queries: LLVM with optimizations

Planning
0.2 ms

LLVM IR

LLVM IR

LLVM IR

LLVM IR

Code
Generation

0.7 ms

LLVM
Passes
25 ms

LLVM Comp.
Optimized

17 ms

LLVM Comp.
Unoptimized

6 ms

Byte Code
Compiler

0.4 ms

SQL

plan

Adaptive Execution

x86
code

byte
code

x86
code

7



Adaptive Execution (2018 -)

• Start with bytecode interpretation
• Extrapolate runtime and run LLVM compiler in the background if beneficial
• Morsel-driven parallelization provides points for switching modes

8



Emit Machine Code Directly (2020 -)

• In Umbra, instead of bytecode we directly emit machine code (x86-64/ARM64)
• Guaranteed linear compilation runtime
• Also: database-specific intermediate representation (Umbra IR)
• Lower latency and higher throughput than bytecode
• LLVM is still used for long-running queries for maximum throughput

9



Invest in Tooling

• Debugging generated code
should be pleasant and easy

• Invest some time in tools to get
a nice code representation

• Allows for smooth debugging
and profiling, interoperability
with C++

• Takes some effort, but that is a
one-time investment

10



Summary

• Compilation is the most flexible and efficient way to execute queries
• Learning curve, but pays off in the long run
• Database systems have requirements that differ from traditional compilers
• Requires custom compilation infrastructure and tooling
• Techniques are documented in academic papers:

• Thomas Neumann: Efficiently Compiling Efficient Query Plans for Modern Hardware. Proc. VLDB Endow. 4(9): 539-550 (2011)
• Thomas Neumann, Viktor Leis: Compiling Database Queries into Machine Code. IEEE Data Eng. Bull. 37(1): 3-11 (2014)
• Timo Kersten, Viktor Leis, Alfons Kemper, Thomas Neumann, Andrew Pavlo, Peter A. Boncz: Everything You Always Wanted to Know
About Compiled and Vectorized Queries But Were Afraid to Ask. Proc. VLDB Endow. 11(13): 2209-2222 (2018)

• André Kohn, Viktor Leis, Thomas Neumann: Adaptive Execution of Compiled Queries. ICDE 2018: 197-208
• Timo Kersten, Thomas Neumann: On another level: how to debug compiling query engines. DBTest@SIGMOD 2020
• Timo Kersten, Viktor Leis, Thomas Neumann: Tidy Tuples and Flying Start: fast compilation and fast execution of relational queries
in Umbra. VLDB J. 30(5): 883-905 (2021)

• Ferdinand Gruber, Maximilian Bandle, Alexis Engelke, Thomas Neumann, Jana Giceva: Bringing Compiling Databases to RISC
Architectures. Proc. VLDB Endow. 16(6): 1222-1234 (2023)

11

https://www.vldb.org/pvldb/vol4/p539-neumann.pdf
http://sites.computer.org/debull/a14mar/p3.pdf
http://www.vldb.org/pvldb/vol11/p2209-kersten.pdf
http://www.vldb.org/pvldb/vol11/p2209-kersten.pdf
https://db.in.tum.de/~leis/papers/adaptiveexecution.pdf
https://www.db.in.tum.de/~kersten/codegen_debugger.pdf
https://db.in.tum.de/~kersten/Tidy Tuples and Flying Start Fast Compilation and Fast Execution of Relational Queries in Umbra.pdf
https://db.in.tum.de/~kersten/Tidy Tuples and Flying Start Fast Compilation and Fast Execution of Relational Queries in Umbra.pdf
https://www.vldb.org/pvldb/vol16/p1222-gruber.pdf
https://www.vldb.org/pvldb/vol16/p1222-gruber.pdf

