
Can we democratize JIT compilers?

Haoran Xu
Stanford University

Make a wheel with the wheel



A little bit about me…

● Undergrad @ MIT, studied…
○ some math → found myself too stupid for math → gave up
○ some CS theory → found myself too stupid for theory → gave up
○ some Japanese → only thing I still remember 

● Intern & full-time database dev @ SingleStore:
○ SQL & DB features: secondary index, computed column, user-level page cache…

● now PhD @ Stanford 
○ JIT compiler research



LLVM: Reusable Compiler Infrastructure

● Numerous use cases:
○ Static compilers: C, Rust, Zig, WebAssembly, Fortran…
○ Database JITs: PostgreSQL, SingleStore, Hyper…
○ Language JITs: Julia, Numba…

● So why reinvent the wheel?



LLVM: not the silver bullet for JIT

● JIT is really a after-thought for LLVM
○ LLVM produces very good code, but the compilation itself is very slow

■ Goal of JIT: minimize compile + execution time, not execution only!
○ LLVM designed for static languages

■ Cannot support dynamic language optimizations
■ No dynamic language VM uses LLVM now (many failed attempts in the past)

○ Deployment issues
■ Huge library, no backward/forward compat



Can we have a better reusable infrastructure for JIT compilers?



Copy-and-Patch

● How can we generate code without LLVM?
○ And, without reinventing LLVM?

● Idea: use LLVM to pre-generate machine code snippets (“stencils”) 
○ that can be configured and stitched together at runtime.

● Stencil has holes:
○ Literals in the instructions (e.g., branch destination, immediate operands)
○ Registers in the instructions (unpublished)

● Copy stencil, patch holes → executable code

Paper: Copy-and-Patch Compilation, Haoran Xu & Fredrik Kjolstad, OOPSLA 2021 
https://fredrikbk.com/publications/copy-and-patch.pdf



Copy-and-Patch

● Proof-of-concepts 
○ SQL query compiler

■ ~1000x faster compilation than LLVM -O3, 24% slower code
○ WebAssembly compiler

■ 4.9x - 6.5x faster compilation than V8 Liftoff, also 39% - 63% faster code

● CPython 3.13 experimental Copy-and-Patch JIT (I’m not involved)

● MLIR research-prototype Copy-and-Patch backend (I’m not involved)

● Backend for a research graph database (I’m not involved)

Paper: Copy-and-Patch Compilation, Haoran Xu & Fredrik Kjolstad, OOPSLA 2021 
https://fredrikbk.com/publications/copy-and-patch.pdf



Copy-and-Patch

● Makes the very complex problem of writing a JIT much easier
○ Nevertheless, many hacks & rough edges, not very beautiful

● Solves the problem of code generation
○ But doesn’t solve the problem of higher-level optimizations

● But can we push one step further?



Deegen

● Ultimate goal: a reusable infrastructure for dynamic languages

Bytecode Semantic 
Description in C++
(single source of truth)

Heavyweight 
Optimizing JIT

Lightweight 
Optimizing JIT

tier-up

tier-up OSR-exit

Interpreter

OSR
exit

tier-up

Automatic Generation

Baseline JIT

Far Future Work

In Progress

Paper: Deegen: A JIT-Capable VM Generator for Dynamic Languages
Haoran Xu, Fredrik Kjolstad 

https://arxiv.org/pdf/2411.11469



LuaJIT Remake

● Standard-compliant Lua 5.1 VM
● Interpreter: 179% faster than PUC Lua, 31% faster than LuaJIT interpreter
● Baseline JIT: 360% faster than PUC Lua, 33% slower than LuaJIT

○ Note that baseline JIT is not designed to compete with optimizing JIT on throughput!
○ We are working on generating optimizing JIT (to be covered shortly)

Paper: Deegen: A JIT-Capable VM Generator for Dynamic Languages
Haoran Xu, Fredrik Kjolstad 

https://arxiv.org/pdf/2411.11469



Baseline JIT: Copy-and-Patch++

● Copy-and-Patch with dynamic-language-specific optimizations
○ Polymorphic inline caching
○ Hot-cold code splitting
○ Type-based optimizations

● See paper for more info

Paper: Deegen: A JIT-Capable VM Generator for Dynamic Languages
Haoran Xu, Fredrik Kjolstad 

https://arxiv.org/pdf/2411.11469



Optimizing JIT: Copy-and-Patch    + higher-level opts

● No publication or blog post yet, but code is available (google LuaJIT-Remake!)
● Copy-and-Patch with truly generic register allocation 
● Generated IR definition: 

○ Yes, we generate the definition of an IR!

● Frontend: bytecode → IR
● Speculative inlining
● Type speculation
● OSR exit map generation
● All work listed above are done, but many more TODO ideas on the table…

++++



Thanks for your attention!

● Questions :)


